Supplemental Material ## **Evidence on the Human Health Effects of Low Level Methylmercury Exposure** Margaret R. Karagas, Anna L. Choi, Emily Oken, Milena Horvat, Rita Schoeny, Elizabeth Kamai, Whitney Cowell, Philippe Grandjean, Susan Korrick ## **Table of Contents:** | Supplemental Material, Table S1. Published Studies of Low-Level Methylmercury Exposure and Birth Outcomespg. S3 – S5 |) | |---|-----| | Supplemental Material, Table S2. Published Studies of Low-Level Methylmercury Exposure and Neurocognitive and Behavioral Outcomespg. S6 – S13 | 3 | | Supplemental Material, Table S3. Published Studies of Low-Level Methylmercury Exposure and Cardiovascular Outcomespg. S14 – S | | | Supplemental Material, Table S4. Published Studies of Low-Level Methylmercury Exposure and Immunologic Outcomespg. S17 – S | | | Referencespg. S19 – S | 323 | | Supplementa | l Material, Table S | S1. Published Stu | dies of Low | -Level Methylmerc | ury Exposure and Birth O | utcomes and Infan | t Growth (listed by year of pub | lication) | |--|--|---|-------------------------|--|---|---|---|--| | Author | Population/
Study Group | Study Design | Sample
Size | Exposure
Assessment | Exposure Level | Outcomes | Findings | Other contaminants/ nutrients examined | | Sikorski et
al., 1986 | Lublin, Poland | Birth Cohort,
enrolled at
labor/delivery | N=41 | Maternal scalp hair Hg Maternal pubic hair Hg Infant hair Hg | Mean: 1.88 μg/g
Range: 0.02-40.60 μg/g
Mean: 1.01 μg/g
Range: ND-31.86 μg/g
Mean: 0.11 μg/g | Birth weight,
birth length,
head and chest
circumference | Significant inverse correlation between Hg in infant hair and birth weight | None | | Lucas et al.,
2004 | Nunavik,
Canada | Birth Cohort,
enrolled at
labor/ delivery | N=439 | Cord blood Hg | Range: ND-0.62 μg/g Geomean: 14.1 μg/L (95% CI 13.,15.2) | Birth weight, gestational age | Mercury levels not
significantly associated with
birth weight or gestational
age in unadjusted models | Cord plasma
concentration of
n-3 PUFA, PCB | | Daniels et al., 2007 | Bristol, England
and surrounding
areas | Birth Cohort,
enrolled
during prenatal
visits | N=1040 | Cord tissue Hg | Median: 0.01 μg/g wet
weight | Birth weight,
gestational age | Hg in cord tissue not associated with gestational age or birth weight | Fish intake | | Xue et al.,
2007 | Five Michigan communities (rural, suburban, urban) | Birth Cohort,
enrolled at
15 th -27 th week
of pregnancy | N=1024 | Maternal hair Hg | Mean: $0.29 \mu g/g$
Median: $0.23 \mu g/g$
Range: 0.01 -2.50 $\mu g/g$
highest Hg levels ($\geq 90^{th}$
percentile, 0.55 -2.50 $\mu g/g$) | Gestational age | Women who delivered at <35 weeks (very pre-term) were more likely to have had hair Hg levels ≥90 th percentile (.55-2.5 µg/L). Hg levels not associated with delivery at 35-36 weeks | Fish
consumption | | NYC hospitals close to Ground Lederman et Zero, deliveries | Birth Cohort, | N=220 | Maternal whole blood Hg | Geomean: 1.6 μg/L;
(95% CI 1.4,1.81) | Birth weight,
birth length,
head | No significant relationship | Seafood | | | al., 2008 | between 12/12/01 and 6/26/02 | enrolled at
labor/ delivery | N=329 | Cord blood Hg | Geomean: 4.44 μg/L;
(95% CI 3.91, 5.04) | circumference,
gestational age | between Hg and birth outcomes. | consumption | | Supplementa | l Material, Table S | S1 (Cont.) Publisl | hed Studies | of Low-Level Meth | ylmercury Exposure and l | Birth Outcomes and | d Infant Growth (listed by year | of publication) | |---------------------|---|---|----------------|--|---|---|--|---| | Author | Population/
Study Group | Study Design | Sample
Size | Exposure
Assessment | Exposure Level | Outcomes | Findings | Other contaminants/ nutrients examined | | Ramon et al., 2009 | Hospital La Fe
in Valencia,
Spain | Birth Cohort,
enrolled at
10 th -13 th week
of pregnancy | N=554 | Cord blood Hg | Geomean: 9.4 μg/L
(95% CI 8.8, 10.2) | Birth weight,
birth length,
gestational age | Increased cord blood Hg associated with reduced birth weight and increased risk of being born small for gestational age (SGA) for length. Large oily fish associated with higher risk for SGA for weight. Canned tuna consumption associated with higher birth weight. Lean fish consumption associated with lower risk of SGA for length. | Adjusted by
type of fish
consumed | | | | | | Cord blood Hg | Geomean: 5.53 μg/L
Range 0.23-24.1 μg/L | | Lower birth weight with GSTM1 null type and | | | | Seoul, | Birth Cohort, | | Early pregnancy
(12-20 wks)
maternal whole
blood Hg | Geomean: 3.67 μg/L
Range: 0.27-22.6 μg/L | | increasing cord blood Hg,
and GSTT1 null type and
increasing Hg in late
pregnancy. | | | Lee et al.,
2010 | Cheonan, and
Ulsan, South
Korea | enrolled in
first trimester
of pregnancy | N=417 | Late pregnancy
(28-42 wks)
maternal whole
blood Hg | Geomean: 3.30 μg/L
Range: .12-18.5 μg/L | Birth weight | No association with GSTM1/GSTT1 present types. >90 th percentile late pregnancy Hg levels associated with lower birth weight, especially when GSTM1/ GSTT1 double null | Fish intake | | Supplementa | l Material, Table S | S1 (Cont.) Publish | ed Studies | of Low-Level Meth | ylmercury Exposure and l | Birth Outcomes and | d Infant Growth (listed by year | of publication) | |--------------------------------------|--|---|----------------|--|--|--|--|--| | Author | Population/
Study Group | Study Design | Sample
Size | Exposure
Assessment | Exposure Level | Outcomes | Findings | Other contaminants/ nutrients examined | | Drouillet-
Pinard et al.,
2010 | France | Birth Cohort,
enrolled before
24 th week of
pregnancy | N=645 | Maternal hair Hg | Median: 0.52 μg/g
IQR: 0.30-0.82 μg/g
SD.: 2.6 | Ultrasound measures; birth weight, birth length, head circumference, sum of skin folds, gestational length, placental weight | No consistent association between Hg level and fetal growth. | Seafood
consumption,
Se levels | | | | Birth Cohort,
enrolled
during second
trimester of | | Maternal whole blood T-Hg | Range: 0.1-5.2 μg/L | | | | | | W. A. | | N=53 | Placenta T-Hg | Range: 0.1-11.7 μg/g | | Maternal hair Hg
significantly associated with
birth length in bivariate
analyses only; otherwise Hg
levels not associated with
newborn anthropometry | | | | | | | Placenta I-Hg | Range: 0.1-4.3 μg/g | Birth weight,
birth length,
head
circumference at | | | | Gundacker | | | | Placenta Me-Hg | Range: 0.1-9.2 μg/g | | | Pb, seafood | | et al., 2010 | Vienna, Austria | | | Cord blood T-Hg | Range: 0.2-6.8 µg/L | | | consumption | | | | pregnancy | | Meconium T-Hg | Range: 0.4-128 µg/g | birth | | | | | | pregnancy | | Breast milk I-Hg | Range: 0.1-2.0 µg/L | | | | | | | | | Maternal hair T-
Hg | Range: 0.05-0.77 μg/g | | | | | | | | | Cord blood Hg | Geomean: 5.52 μg/L
SD: 1.6 μg/L | | Inverse relationship between | | | Kim et al.,
2011 | Seoul,
Cheonan, and
Ulsan, South | Birth Cohort,
enrolled in
first trimester | N=797 | Early pregnancy
(12-20 wks)
maternal whole
blood Hg | Geomean: 3.4 μg/L
SD: 1.6 μg/L | Infant weight at 6, 12, and 24 | infant weight at 24 months
and cord blood and late
pregnancy maternal blood Hg
levels | Fish intake | | | Korea | of pregnancy | | Late pregnancy
(28-42 wks)
maternal whole
blood Hg | Geomean: 3.1 μg/L
SD: 1.7 μg/L | months of age | No significant inverse relationship between infant weight at 12 months and Hg level | | Supplemental Material, Table 1 Abbreviations: CI (confidence interval); Geomean (geometric mean); GSTM1 (Glutathione-S-transferases M1); GSTT1 (Glutathione-S-transferases T1); Hg (mercury); I-Hg (inorganic mercury); IQR (interquartile range); Me-Hg (methylmercury); n-3 PUFA (omega-3
polyunsaturated fatty acid); ND (non-detect); PCBs (polychlorinated biphenys); SD (standard deviation); Se (selenium); T-Hg (total mercury); | Supplemental | Material, Tab | le S2. Published Studies o | f Low-Level Me | thylmerucy Exposu | re and Neurocognitive and | Behavioral Outcomes | (listed by exam age) | |------------------------------|---------------|--|------------------------------------|--|--|---|---| | Author | Exam Age | Population/Study
Group | Study Design | Mercury
Exposure
Assessment | Outcomes (analyses) | Findings | Comments | | Suzuki et al.,
2010 | 3 days | 498 mother-newborn
(term) pairs in Tohoku,
Japan | Prospective birth cohort | Median (range):
Maternal hair
2.0 (0.3-9.4) μg/g | Neonatal Behavioral
Assessment Scale
(NBAS);
(multivariable linear
regression) | 0.12 point ↓motor
cluster per log
increase hair Hg | Models adjusted for multiple confounders including PCBs & seafood consumption | | Gao et al.,
2007 | 3 days | 384 mother-newborn
(term) pairs in
Zhoushan City, China | Prospective
birth cohort | Geomean (IQR):
Cord blood 5.6
(4.0-7.8) μg/L
Maternal hair
1.2 (0.9-1.7) μg/g | Neonatal Behavioral
Neurological Assessment
(NBNA);
(logistic regression
stratified by sex | ↑ prenatal Hg → ↓ NBNA behavior score in males: OR = 1.2, 95% CI 1.1 to 1.4 per log increase cord blood Hg | Limited assessment for confounding; multiple (6) outcomes; results attenuated using maternal hair Hg levels | | Cace et al., 2011 | Neonatal | 137 mother-newborn pairs in Croatia | Prospective pregnancy cohort | Mean (range):
Maternal hair 0.9
(0.02-8.7) μg/g | Neurosonographic exam
(compare median
cerebellar dimensions for
high vs. low exposed) | ↓1.6 mm (average)
cerebellar length
where hair Hg \geq 1
µg/g (n=30, mean
Hg 2.4 µg/g) | Descriptive analysis only; no modeling, no adjustment for confounders, minimal information re. population. | | Oken at al.,
2005 | 6 mos | 135 mother-infant pairs
in Massachusetts,
U.S.A. | Prospective pregnancy cohort | Mean (range): Maternal hair @ parturition: 0.6 (0.02-2.4) µg/g | Visual Recognition
Memory (VRM);
(multivariable linear
regression) | ↑ prenatal Hg → ↓ VRM score: -7.5 pts, 95% CI - 13.7 to -1.2 per ppm hair Hg | Models adjusted for multiple confounders including pregnancy fish consumption | | Jedrychowski
et al., 2006 | 12 mos | 233 mother (non-
smoking)-infant pairs in
Krakow, Poland | Prospective
pregnancy
cohort | Geomean (range): Maternal blood @ birth: 0.6 (0.1-3.4) μg/L Cord blood: 0.9 (0.1-5.0) μg/L | Bayley Scales of Infant Development (BSID-II); (multivariable logistic regression; outcome = performance on both Psychomotor Developmental Index (PDI) and Mental Developmental Index (MDI)) | ↑ prenatal Hg → ↑ risk of delay on PDI or MDI (n=36): RR = 3.6, 95% CI 1.4 to 9.1 for cord blood Hg > 0.8 µg/L RR = 2.8, 95% CI 1.2 to 6.8 for maternal blood Hg > 0.5 µg/L | Limited assessment for confounding (e.g., ascertained fish intake but did not include in models) | | Author | Exam Age | Population/Study
Group | Study Design | Mercury
Exposure
Assessment | Outcomes (analyses) | Findings | Comments | |------------------------------|-------------------|---|------------------------------|--|--|---|--| | Jedrychowski et
al., 2007 | 12, 24, 36
mos | 374 mother (non-smoking)-infant pairs in Krakow, Poland | Prospective pregnancy cohort | (see Jedrychowski et al., 2006) High exposure: Cord blood > 0.9 µg/L (n=177) Low exposure: Cord blood ≤ 0.9 µg/L (n=197) | Bayley Scales of Infant
Development (BSID-II);
(multivariate linear
regression; Generalized
Estimating Equations
(GEE)) | ↑ prenatal Hg → ↓ PDI (cord Hg >0.9 vs. ≤ 0.9 μg/L) -2.3 pts (p=0.04) at 12 mos -1.4 pts (p=0.08) GEE model 12-36 mos ↑ prenatal Hg → ↓ MDI (cord Hg > 0.9 vs. ≤ 0.9 μg/L) -2.8 pts (p=0.01) at 12 mos -1.4 pts (p=0.11) GEE model 12-36 mos Null PDI at 24, 36 mos (cord Hg > 0.9 vs. ≤ 0.9 μg/L): -1.4 pts (p=0.20) at 24 mos +1.2 pts (p=0.37) at 36 mos Null MDI at 24, 36 mos (cord Hg > 0.9 vs. ≤ 0.9 μg/L): -1.1pts (p=0.37) at 36 mos +1.1pts (p=0.42) at 24 mos +1.1pts (p=0.37) at 36 mos | Ascertained fish intake but did not include in models. Children lost to follow up at 24 or 36 mos did more poorly on Bayley than those retained. | | Supplemen | tal Material, T | Table S2 (Cont.) Published | d Studies of Lov | · · · · · · · · · · · · · · · · · · · | cy Exposure and Neurocog | nitive and Behavioral Outo | comes (listed by exam age) | |-----------------------------|---------------------------------------|--|------------------------------------|--|---|---|---| | Author | Exam Age | Population/Study
Group | Study Design | Mercury
Exposure
Assessment | Outcomes (analyses) | Findings | Comments | | Daniels et
al., 2004 | 15, 18 mos | 1054 children in Briston, UK (subset from the Avon Longitudinal Study of Parents & Children (ALSPAC)) | Prospective
pregnancy
cohort | Median (IQR):
Cord tissue 0.01
(0.008-0.02) µg/g
wet weight | MacArthur Communicative Development Inventory (MCDI) at 15 mos; Denver Developmental Screening Test (DDST) at 18 mos. (Generalized Linear Models, GLM) | No association of cord tissue Hg with MCDI or DDST (language & communication skills); maternal & infant fish consumption → ↑MCDI & ↑DDST scores | Models adjusted for multiple confounders including fish intake; cord tissue an unusual matrix, (levels ~25% of Faroes cord tissue) with potential greater Hg measurement error than other matrices. | | Barbone et al., 2004 | median 26
mos
(range 18-
30) | 53 children in
northeastern Italy
(coastal & inland
communities) | Prospective
cohort | Mean MeHg ~3
mos post-partum
(advanced vs. age-
appropriate or
delayed fine
motor):
Maternal hair 0.6
vs. 1.0 μg/g
Infant hair
0.5 vs. 0.7 μg/g | Denver Developmental
Screening Test (DDST-II)
once between 18-30 mos. | ↑ postnatal Hg → ↑risk of expected or delayed DDST fine motoradaptive skill RR = 1.5, 95% CI 1.0 to 2.1 (maternal hair MeHg \geq 1 vs. <1 μ g/g) | Limited assessment for confounding (univariate analyses, fish intake assessed but not modeled). No prenatal exposure measure. Small n & low participation (original cohort n=243) | | Lederman
et al.,
2008 | 12, 24, 36,
48 mos | 329 mother (non-
smoking)-infant pairs;
women pregnant during
2001 U.S. World Trade
Center attack & living
or working in area | Prospective
birth cohort | Geomean (range): Cord blood 4.4 (0.1-63) µg/L Maternal peripartum blood 1.6 (0.07-16) µg/L | Bayley Scales of Infant
Development (BSID-II) at
12, 24, 36 mos; Wechsler
Preschool & Primary
Scale of Intelligence
(WPPSI-R) at 48 mos
(multiple linear
regression) | At 12, 24 mos (n=130-132): Non-sig PDI, MDI decreases per log cord blood Hg At 36 mos (n=111): ↓4.1 pts PDI per log cord blood Hg (non-sig MDI decreases) At 48 mos (n=107): ↓3.2 pts performance IQ per log cord blood Hg ↓2.9 pts verbal IQ per log cord blood Hg ↓3.6 pts full scale IQ per log cord blood Hg | Models adjusted for multiple confounders including fish intake. Except full scale IQ, Hg associations with other outcomes only significant when models include fish consumption. | | Suppleme | ntal Material, | Table S2 (Cont.) Publish | ed Studies of Lo | w-Level
Methylmer | ucy Exposure and Neuroco | gnitive and Behavioral Out | comes (listed by exam age) | |----------------------|----------------|---|--|---|--|---|---| | Author | Exam Age | Population/Study
Group | Study Design | Mercury
Exposure
Assessment | Outcomes (analyses) | Findings | Comments | | Stewart et al., 2003 | 38, 54 mos | 212 mother (including
Lake Ontario
contaminated fish
consumers)-infant pairs | Prospective pregnancy cohort | Median (IQR): Maternal hair (1 st half preg) 0.5 (0.4-0.6) μg/g (2 nd half preg) 0.5 (0.4-0.7) μg/g | McCarthy Scales of
Children's Abilities
(MSCA);
(linear regression) | At 38 mos: \$\\$\\$\\$0.3 pts General Cognitive Index (GCI) per unit increase hair Hg where high PCB levels (n=55) At 54 mos: No relation of Hg with MSCA | Models adjusted for multiple confounders including other neurotoxicants (e.g., PCBs). No main effect of Hg; effect only seen in context of high PCBs but small n. | | Oken et al., 2008 | 3 yrs | 341 mother-infant pairs in Massachusetts, U.S.A. | Prospective pregnancy cohort | Mean (range): Pregnancy (RBC): (0.03-21.9) ng/g | Peabody Picture Vocabulary Test (PPVT) & Wide Range Assessment of Visual Motor Abilities (WRAVMA); (multivariable linear regression) | For upper decile (n=35) vs. <90 th percentile RBC Hg: PPVT: \$\daggeq 4.5 \text{ pts}, 95\% \text{ CI -8.5 to} \text{-0.4} WRAVMA: \$\daggeq 6.0 \text{ pts}, 95\% \text{ CI -10.9 to} \text{-1.1 matching score}; \$\daggeq 4.6 \text{ pts}, 95\% \text{ CI -8.3 to} \text{-0.9 total score} | Models adjusted for multiple confounders including fish intake & n-3 PUFA. RBCs an unconventional matrix (estimate 90 th percentile approximates 1 µg/g hair Hg) | | Freire et al., 2010 | 4 yrs | 72 mother-son pairs in
Granada, Spain | Prospective
birth cohort
(cross-
sectional
analysis) | Geomean:
Child hair at test
0.96 µg/g
95% CI 0.8-1.2
µg/g | McCarthy Scales of
Children's Abilities
(MSCA);
(multivariable linear
regression) | Child hair Hg \geq 1 µg/L (vs. < 1 µg/L):
\$\\$\\$ \delta 6.6\$ pts, 95% CI -13.0 to -0.2 gen. cognitive score; \$\\$\\$ 8.4\$ pts, 95% CI -16.0 to -0.8 memory score; \$\\$\\$\\$ 7.5\$ pts, 95% CI -15.0 to -0.02 verbal score | Models adjusted for multiple confounders including fish intake. Effect of fish intake varied by type (total fish intake mostly adverse). All male cohort. Study population small subset of overall cohort (n~700) | | Supplemental | Material, Table | S2 (Cont.) Published Stu | dies of Low-Lev | el Methylmerucy E | Exposure and Neurocognitive and | l Behavioral Outco | mes (listed by exam age) | |-----------------------------|-----------------|---|-----------------------------|--|--|--|---| | Author | Exam Age | Population/Study
Group | Study Design | Mercury
Exposure
Assessment | Outcomes (analyses) | Findings | Comments | | Despres et al., 2005 | 4-6 yrs | 110 Inuit children in
Nunavik, Canada
(follow up of Cord
Blood Monitoring
Program, n=483) | Prospective
birth cohort | Geomean (range): Cord blood 15.9 (1.8-104) μg/L Child blood at test: 5.9 (0.2-38.2) μg/L | Multiple neuromotor measures
(gross & fine motor, reaction
time); (hierarchical multivariate
linear regression) | ↑blood Hg at test → ↑action tremor amplitude (no relationship with prenatal Hg) | Models assessed multiple
confounders including
other neurotoxicants
(PCBs, Pb, organochlorine
pesticides) & nutrients (Se,
n-3 PUFAs) | | Plusquellec et al., 2010 | 4-6 yrs | 110 Inuit children in
Nunavik, Canada
(follow up of Cord
Blood Monitoring
Program, n=483) | Prospective birth cohort | Mean (range): Cord blood 22.2 (1.8-104) µg/L Child blood at test 9.6 (0.2-38.2) µg/L | Infant Behavioral Rating Scale
(from Bayley Scales of Infant
Development); Coded
behavior from video recordings
of fine motor testing;
(multivariate linear regression) | No Hg-child
behavior
associations | Models assessed multiple
confounders including
other neurotoxicants
(PCBs, Pb, organochlorine
pesticides) & nutrients (Se,
n-3 PUFAs) | | Saint-Amour
et al., 2006 | 5-6 yrs | 102 Inuit children in
Nunavik, Canada
(follow up of Cord
Blood Monitoring
Program, n=483) | Prospective
birth cohort | Geomean (range): Cord blood 16.5 (1.8-104) µg/L Child blood at test: 5.9 (0.2-38.2) µg/L | Visual Evoked Potentials (VEPs); (multivariable linear regression) | ↓3-4 ms latency¹ per log ↑child blood Hg ↑3 ms latency¹ per log ↑cord blood Hg *(time from visual stimulus onset to wave peak) | Models assessed multiple confounders including PCBs, Se & n-3 PUFAs& their interaction with exposure. Small #observations (n=69-72) in final analyses | | Supplementa | ıl Material, | Table S2 (Cont.) Publish | hed Studies of L | ow-Level Methylmo | erucy Exposure and Neuro | ocognitive and Behavioral Outco | mes (listed by exam age) | |------------------------|--|---|---|---|--|---|--| | Author | Exam
Age | Population/Study
Group | Study Design | Mercury
Exposure
Assessment | Outcomes (analyses) | Findings | Comments | | Cao et al.,
2010 | 2, 5, 7
yrs | 780 children from
urban Ohio,
Pennsylvania,
Maryland, New Jersey,
U.S.A. | Randomized
clinical trial
of succimer
Rx for
moderate
childhood
lead
poisoning | Median (IQR):
Child blood at 2
yr baseline
0.6 (0.4-0.8) µg/L
Child blood post
treatment
0.5 (0.4-0.8) µg/L | Bayley Scales of Infant
Development (BSID-II)
at age 2 yrs; Multiple
cognitive & behavioral
assessments at ages 5 &
7;
(general linear models,
GLM) | Per log child blood MeHg at 2 yr baseline: †0.3 pts, 95% CI -1.3 to 1.9 Mental Dev Index (sig where high BPb) †0.8 pts, 95% CI -0.7 to 2.3 IQ at 5 yrs †0.5 pts, 95% CI -1.0 to 2.1 IQ at 7 yrs Behavior (also non-sig, improved pt estimates). | Models adjusted for multiple confounders including BPb & treatment group. No information about fish consumption. | | Cheuk & Wong, 2006 | Mean (SD) cases 7.1 (2.5) controls 7.8 (3.5) yrs | 52 ADHD cases (from
referral clinic)
59 controls
(hospitalized for acute
upper resp infection)
in Hong Kong, China | Case-control study | Geomean
(95% CI):
Case blood 3.6
(3.1-4.3) μg/L
Ctrl blood 2.3
(2.0-2.7) μg/L | Clinical diagnosis of
ADHD
(multivariate logistic
regression) | Child blood Hg > 5.8 μ g/L vs. \leq 5.8 μ g/L: OR = 9.7, 95% CI 2.6 to 36.5 for ADHD diagnosis | No information about fish consumption but assumed relatively high. Ctrls were not healthy; cases & ctrls differed on parental occupation (in models), family history. No ADHD-smoking association. | | Ha et al.,
2009 | 6-10 yrs | 1778 children from 10 schools in South Korea | Cross- sectional survey (part of prospective cohort) | Geomean (SD):
child blood 2.4
(1.96)
µg/L | Conners' Parent Rating
Scale (ADHD
symptoms);
(multivariable logistic
regression) | Child blood Hg quintile 5 (Hg \geq 4.5) vs. quintile 1 (Hg < 1.5) μ g/L: OR = 0.64, 95% CI 0.28 to 1.48 | Models adjusted for multiple confounders including BPb but no information about fish intake. | | Surkan et
al., 2009 | 6-10 yrs | 355 children from the
New England
Children's Amalgam
Trial (Massachusetts
& Maine) | Randomized
Clinical Trial
(baseline
data used for
this analysis) | Mean
(SD):
Child hair at
baseline:
0.3 (0.3) μg/g | Multiple psychometric (n=18) measures including IQ, achievement, visual motor & fine motor ability, memory, & executive function. | No significant linear rel'p btw Hg & tests. Hg $<0.5 \rightarrow \uparrow$ math reasoning; \uparrow visual-motor skill $0.5 \leq Hg \leq 1.0 \rightarrow \downarrow$ math reasoning; \downarrow visual-motor skill Hg > 1.0 (scant data) | Models adjusted for multiple confounders including fish comsumption & BPb. Assessed non-linear dose-response. | | Supplemen | tal Materia | l, Table S2 (Cont.) Publi | shed Studies of | Low-Level Methyln | nerucy Exposure and Neur | rocognitive and Behavioral Outco | mes (listed by exam age) | |------------------------------|---|---|-----------------------------|---|---|---|---| | Author | Exam
Age | Population/Study
Group | Study Design | Mercury
Exposure
Assessment | Outcomes (analyses) | Findings | Comments | | Boucher et al., 2010 | 10-13
yrs | 118 Inuit children in
Nunavik, Canada
(follow up of Cord
Blood Monitoring
Program, n=483) | Prospective
birth cohort | Median (range): Cord blood 14.2 (1.8-99.3) µg/L Child blood at test 2.8 (0.2-28.1) µg/L | Auditory Event-Related
Potentials (ERPs) during
oddball task;
(hierarchical
multivariable linear
regression) | ↑cord Hg → ↑rxn time & ↓ false alarms ↑cord Hg → ↑latency & ↑amplitude (more neg) (target condition) No sig rel'p btw child Hg & tests | Models assessed multiple confounders include Pb, DHA, and Se. Hg effects enhances among those breastfed < 3 mos. | | Torrente et al., 2005 | 12-14
yrs | 100 children in
Terragona, Spain | Cross
sectional | Mean (range):
Child hair
0.7 (0.1-2.2) μg/g | Standardized testing;
(correlation analyses
adjusted for age and
SES) | Positive correlation (r=0.20, p<0.05) btw child Hg & visuospatial skills | Limited adjustment for
potential confounders.
Multi-element hair analyses
(Cd, Cr, Pb, Mn, Ni, Sn,
Hg) assessed one-at-a-time. | | Yokoo et al., 2003 | 17-81
yrs
(mean
35) | 129 Adults in the
Pantanal Region,
Brazil | Cross
sectional | Median (range);
Adult hair
3.7 (0.6-13.6)
µg/g | Multiple psychometric tests; (multivariable linear & logistic regression) | ↑hair Hg → ↓fine motor speed/dexterity, memory, response inhibition | Limited adjustment for confounders (e.g., fish intake not assessed). | | Philibert
et al.,
2008 | 18-74
yrs
Median:
50 yrs
(men) &
47 yrs
(women) | 243 lake fish eaters in Quebec, Canada | Cross
sectional | Median (SD): Adult hair 0.6 (1.4) men; 0.4 (1.0) women μg/g Adult blood 2.3 (5.5) men; 2.1 (3.9) women μg/L | Brief Symptom
Inventory (BSI,
neuropsychiatric sxs);
(multivariate linear
regression stratified by
sex) | ↑Hair Hg → ↑BSI for multiple sxs (e.g., obsessive-compulsive, depression, anxiety) (women only) | Positive results in women only. Essentially no associations with blood Hg. Fish, n-3 PUFAs assessed separately. | | Weil et al.,
2005 | 50-70
yrs | Random subset
(n=474) from
Baltimore Memory
Study (n=1140)
prospective cohort
Baltimore, MD,
U.S.A. | Cross-
sectional | Median (range):
Adult blood
2.1 (0-16) μg/L | 12 standardized
neurobehavioral tests
(20 outcome measures);
(multivariable linear
regression) | Per IQR ↑Hg: ↓3% visual memory (Rey Complex Figure delayed recall); ↑2% manual dexterity (Finger Tapping) | Models considered multiple confounders including fish intake, n-3 PUFAs, BPb, & risk factors for degenerative neurologic disease (e.g., APOE genotype, stroke, diabetes, BMI, homocysteine level, lipids, anithypertension medication, etc.). | | Supplemental M | Supplemental Material, Table S2 (Cont.) Published Studies of Low-Level Methylmerucy Exposure and Neurocognitive and Behavioral Outcomes (listed by exam age) | | | | | | | | | | | |---------------------------|--|--|---------------------|---|---|---|---|--|--|--|--| | Author | Exam
Age | Population/Study
Group | Study Design | Mercury
Exposure
Assessment | Outcomes (analyses) | Findings | Comments | | | | | | Johansson et al.,
2002 | ≥ 81 yrs,
mean 87 | Subset (n=106) from
Kungsholmen Project
prospective cohort | Cross-
sectional | Mean (range):
Adult blood
3.4 (0.4-16) μg/L | Neurologic exam, Mini-
Mental State
Examination (MMSE),
blood pressure, BMI;
(correlation analysis) | Null study (Hg-MMSE correlation = 0.14) | No assessment for
confounding. Subsample
selected, in part, based on
MMSE score. n=8
excluded for 'outlier' Hg
values. | | | | | Supplemental Material, Table 2 Abbreviations: ADHD (Attention Deficit Hyperactivity Disorder); APOE (apolipoprotein E); BMI (body mass index); BPb (blood lead); btw (between); Cd (cadmium); CI (confidence interval); Cr (chromium); ctrl(s) (control(s)); DHA (docosahexaenoic acid); gen (general); geomean (geometric mean); Hg (mercury); IQ (intelligence quotient); IQR (interquartile range); MeHg (methylmercury); mm (millimeters); Mn (manganese); mos (months); ms (milliseconds); n-3 PUFA (omega 3 polyunsaturated fatty acid); neg (negative); Ni (nickel); non-sig (non-significant); OR (odds ratio); PCBs (polychlorinated biphenyls); pt(s) (point(s)); RBC (red blood cell); re (regarding); rel'p (relationship); resp (respiratory); RR (relative risk); rx (medication); rxn (reaction); SD (standard deviation); Se (selenium); SES (socioeconomic status); sig (significant); Sn (tin); sxs (symptoms). | Author | Population/Study
Group | Study Design | Sample Size | Exposure
Assessment | Exposure Level | Outcomes | Findings | Other contaminants/nutrients examined | |--------------------------|--|-----------------------|--------------------------------------|------------------------|--|---|--|---| | Salonen et al.,
1995 | Eastern Finnish
men
(42-60 years) | Prospective cohort | N=1833 | Hair and
urine Hg | Hair Hg: Mean 1.92 μg/g
(Range: 0-15.7 μg/g)
Urinary Hg:1.18 μg/24 hr
(Range: 0-4.95 μg/24 hr | AMI, death from
CHD, CVD | Over 2-fold risk of
AMI and mortality
from CHD and CVD
associated with
elevated hair Hg (>2
µg/g) | Intake of fish, iron plasma fibrinogen serum selenium and apolipoprotein B, concentrations of HDL ₂ cholesterol and ferritin | | Salonen et al.,
2000 | Eastern Finnish
men
(42-60 years) | Prospective
cohort | N=1014 | Hair Hg | Mean: 1.8 μg/g
(Range: 0-23.3 μg/g) | Carotid
atherosclerosis
(determined by
intima-media
thickness, IMT) | Hg associated with accelerated progression of carotid atherosclerosis. | Intake of
cholesterol,
selenium and
unspecified fatty
acids, fibers, and
vitamins | | Rissanen et al.,
2000 | Eastern Finnish
men
(42-60 years) | Prospective
cohort | N=1871 | Hair Hg | Mean: 1. 91 μg/g
(Range: 0-15.67 μg/g) | Fatal or nonfatal
acute coronary
events | Fish oil-derived fatty
acids reduce risk of
acute coronary
events; high Hg in
fish could attenuate
this effect. | DPA+DHA, EPA
serum ferritin,
serum LDL
cholesterol, serum
insulin | | Guallar et al.,
2002 | Men from eight European countries and Israel (70 years or younger) Avg. age: Cases: 54.7±8.9yrs; Cntrls:53.2±9.3 yrs | Case-control
study | Cases
N=684;
Controls
N=724 | Toenail Hg | Overall means:
Cases = $0.27 \mu g/g$
(Range $0.14\text{-}0.68 \mu g/g$);
Controls = $0.25 \mu g/g$
(Range $0.14\text{-}0.57 \mu g/g$) | First diagnosis of
MI | Toenail Hg
associated with risk
of MI; DHA
inversely associated
with risk. | DHA, serum cholesterol | | Supplemental M | laterial, Table S3 (Co | nt.) Published St | udies of Low-Le | vel Methylmerc | ury Exposure and Cardiovaso | cular Outcomes (liste | ed by year of publication | | |---------------------------|--|--
--|------------------------|---|--|---|--| | Author | Population/Study
Group | Study Design | Sample Size | Exposure
Assessment | Exposure Level | Outcomes | Findings | Other contaminants/ nutrients examined | | Yoshizawa et
al., 2002 | US male health
professionals
(40-75 years) | Nested case-
control with
five years of
follow-up | 470 cases
(from 33,737
members);
464 controls
(matched by
age and
smoking
status) | Toenail Hg | Mean Hg, Cases = 0.74
$\mu g/g$;
Controls = 0.72 $\mu g/g$ | CHD (coronary-
artery surgery,
nonfatal MI, fatal
CHD) | No association between Hg and risk of CHD; after excluding dentists, RR for highest exposure (0.84 μ g/g) versus lowest (0.13 μ g/g) = 1.27, not statistically significant. | Levels of DHA,
EPA, selenium,
and cadmium | | Virtanen et al.
2005 | Eastern Finnish
men
(42-60 years) | Prospective cohort | N=1871 | Hair Hg | Mean=1.9 μg/g
(Range: 0-15.7 μg/g) | Acute coronary events and cardiovascular and all-cause mortality | Increased Hg exposure associated with increased risk of acute coronary events and CVD mortality; Hg seemed to attenuate the protective effects of fish on cardiovascular health. | DHA+DPA, HDL
and LDL
cholesterol, serum
selenium, dietary
intakes of saturated
fatty acids, fiber,
and vitamins C and
E | | Vupputuri et al., 2005 | NHANES 1999-
2000
Women
(16-49 years) | Cross-
sectional
survey of the
US population | N=1240 | Blood Hg | Mean=1.8 μg/L (Range: 0.1-21.4 μg/L Fish consumers, Mean = 2.3 μg/L; Non-fish consumers, Mean=0.8 μg/L) | Systolic and
diastolic blood
pressure | Hg not significantly associated with SBP or DBP in entire cohort; however, significant positive association between SBP and Hg among non-fish consumers (similar pattern for DBP, non-significant). | Intake of sodium, potassium, and fish | | Supplemental Material, Table S3 (Cont.) Published Studies of Low-Level Methylmercury Exposure and Cardiovascular Outcomes (listed by year of publication) | | | | | | | | | | | |---|---|--|---|------------------------|---|---|--|---|--|--| | Author | Population/Study
Group | Study Design | Sample Size | Exposure
Assessment | Exposure Level | Outcomes | Findings | Other contaminants/ nutrients examined | | | | Valera et al.,
2009 | Nunavik Inuit
(18-71 years) | Prospective cohort | N=732 | Blood Hg | Mean: 10.2 μg/L | BP, and pulse pressure | Hg associated with increasing BP and pulse pressure. | DHA, EPA,
selenium, and lead
levels, LDL and
HDL cholesterol,
triglycerides | | | | Mozaffarian et
al., 2011 | HPFS (male US health professionals), 40-75 years and NHS (female US registered nurses), 30-55 years | Nested case
control study
from both
prospective
cohort studies | Cases:
N=3427
Controls:
N=3427 | Toenail Hg | Mean (SD): | Incident CVD (i.e. nonfatal MI, fatal CHD or stroke) | No adverse effects of
Hg exposure on
CHD, stroke, or total
CVD. | Selenium,
consumption of
fish, DHA, EPA | | | | Wennberg et al., 2011 | Northern Sweden
cohort | Nested case
control study | Cases:
N=431
Controls:
N=499 | Ery-Hg | Median (range) of Ery-
Hg:
3.54 (0.01-87) μg/g or
0.52 (0.0015-12.7) μg/g
hair-Hg | Myocardial
infarction cases
including sudden
cardiac death | No adverse effect of
mercury on the risk
of myocardial
infarction | Selenium, EPA,
DHA | | | Supplemental Material, Table 3 Abbreviations: AMI (acute myocardial infarction); CHD (coronary heart disease); CVD (cardiovascular disease); DBP (diastolic blood pressure); DHA (docosahexaenoic acid); DPA (docosapentaenoic acid); EPA (eicosapentaenoic acid); Ery-Hg (erythrocyte mercury); Hg (mercury); HPFS (Health Professionals Follow-up Study); IMT (intema media thickness); MI (myocardial infarction); NHANES (National Health and Nutrition Examination Survey); NHS (Nurse's Health Study); RR (relative risk); SBP (systolic blood pressure) | Supplemental | Supplemental Material, Table S4. Published Studies of Low-Level Methylmercury Exposure and Immunologic Outcomes (listed by year of publication) | | | | | | | | | | | |------------------------------|---|---|---|--|--|---|---|--|--|--|--| | Author | Population/ Study
Group | Study
Design | Sample Size | Exposure
Assessment | Exposure Level | Findings | Effect Modifiers/Adjustment for Confounders | | | | | | Belles-Isles
et al., 2002 | Newborns in Canadian subsistence fishing population & coastal town residents (reference group) | Cross
sectional
(births
1995-97) | Mother-infant pairs: n=48 (subsistence fishers) & n=60 (coastal town residents) | Cord blood | Cord blood Geomean (95% CI): 1.8 (1.4-2.3) µg/L (subsistence fishers); 0.9 (0.8-1.0) µg/L (coastal town residents) | Cord blood Hg inversely correlated with proportion of naive helper T cells and plasma IgM levels in cord blood. No relationship with multiple other measures of T, B, and NK (natural killer) cell proportions and function | No adjustment for
confounders despite
substantial differences
between subsistence
fishers and coastal
residents, including
organochlorine exposures | | | | | | Bilrha et al.,
2003 | Newborns in Canadian subsistence fishing population &coastal town residents (reference group) | Cross
sectional
(births
1997-98) | Mother-infant pairs: n=47 (subsistence fishers) n=65 (coastal town residents) | Cord blood | Cord blood Hg Geomemean (95% CI): 1.8 (1.5-2.2) µg/L (subsistence fishers) 1.1 (0.9-1.2) µg/L (coastal town residents) | No correlation between cord
blood Hg & cord blood
lymphocyte activation markers
or cytokine secretion. | No adjustment for
confounders despite
substantial differences
between subsistence
fishers and coastal
residents, including
organochlorine exposures | | | | | | Miyake et al., 2011 | Osaka Maternal
and Child Health
Study | Prospective prebirth cohort | 582
mother/child
pairs | Maternal hair
andchild hair
at 29-39
months | Maternal hair Hg
Median 1.52 μg/g
Range 0.26 – 6.05 μg/g
Child hair Hg | No association between hair mercury and risk of wheeze or eczema in children. Suggestive but non-significant eczema risk with OR = 1.26, 95% CI 0.67-2.36 for highest vs. lowest quartile of child hair Hg | Models adjusted for potential confounders including maternal pregnancy and child fish intake. Despite adjustment, authors consider there to be potential residual | | | | | | | | | | | Median 1.38 μg/g
Range 0.13 – 9.51μg/g | | confounding by fish intake. | | | | | | Supplemental | Supplemental Material, Table S4 (Cont.) Published Studies of Low-Level Methylmercury Exposure and Immunologic Outcomes (listed by year of publication) | | | | | | | | | | | | |---------------------|--|--|--|--|--|---|--|--|--|--|--|--| | Author | Population/ Study
Group | Study
Design | Sample Size | Exposure
Assessment | Exposure Level | Findings | Effect Modifiers/Adjustment
for Confounders | | | | | | | Nyland et al., 2011 | Mother-infant
pairs in Brazilian
Amazon | Population-
based
Survey | 61 mother-
infant pairs | Cord blood
and maternal
blood at
delivery | Cord blood Hg: 9.63 μg/L Range: 0.08-77.80 μg/L Maternal blood Hg: 6.90 μg/L Range: 0.08-55.48 μg/L | Total IgG level in cord blood significantly positively associated with cord blood and maternal Hg levels. No associations seen with serum ANA titers or cytokine levels. | Adjusted for maternal age, education level, and residence (no fish consumption information but education correlated with fish intake). | | | | | | | Park & Kim, 2011 | General adult population (≥20 years) in Republic of Korea | Population
based cross
sectional
survey | 1990 Korean
adults [11%
with lifetime s
AD; 9% with
AD within 1yr
of study] | Adult blood | Geomean, no AD:
3.45 μg/L
(95% CI 3.17-3.76)
Geomean, lifetime AD:
4.66 μg/L (95% CI 3.81-5.70)
Geomean, 1 yr AD:
4.91 μg/L (95% CI 3.97-6.08) | Hg significantly associated with increased lifetime and 1 yr AD: OR (95% CI) lifetime AD, upper vs. lower tertile Hg: 1.50 (1.02-2.21) OR 1 yr AD, upper vs. lower tertile Hg: 1.82 (1.17-2.83) | Adjusted for multiple potential confounders including fish &shellfish intake. | | | | | | Supplemental Material, Table 4 Abbreviations: AD (atopic dermatitis); ANA (antinuclear autoantibody); BMI (body mass index); BPb (blood lead); CI (confidence interval); DDE (dichlorodiphenyldichloroethylene); geomean (geometric mean); Hg (mercury); ;med (medium); mos (months); OR (odds ratio); n-3 PUFAs (omega-3 polyunsaturated fatty acids); PCBs (polychlorinated biphenyls); SES (socioeconomic status) ## **REFERENCS** - Barbone F, Valent F, Pisa F, Daris F, Fajon V, Ing D, et al. 2004. Prenatal low-level methlmercury exposure and child development in an Italian costal area. Seychelles Medical and Dental Journal (SMDJ) 7(1): 149-154. - Belles-Isles M, Ayotte P, Dewailly E, Weber J-P, Roy R. 2002. Cord blood lymphocyte functions in newborns from a remote maritime population exposed to organochlorines and methylmercury. J Toxicol Environ Health A 65:165-182. - Bilrha H, Roy R, Moreau B, Belles-Isles M, Dewailly E, Ayotte P. 2003. In vitro activation of cord blood mononuclear cells and cytokine production in a remote coastal population exposed to organochlorines and methyl mercury. Environ Health Perspect 111(16): 1952-1957. - Boucher O, Bastien CH, Saint-Amour D, Dewailly E, Ayotte P, Jacobson JL, et al. 2010. Prenatal exposure to methylmercury and PCBs affects distinct stages of information processing: an event-related potential study with Inuit children. Neurotoxicology 31(4): 373-384. - Cace IB, Milardovic A, Prpic I, Krajina R, Petrovic O, Vukelic P, et al. 2011. Relationship between the prenatal exposure to low-level of mercury and the size of a newborn's cerebellum. Med Hypotheses 76(4): 514-516. - Cao Y, Chen A, Jones RL, Radcliffe J, Caldwell KL, Dietrich KN, et al. 2010. Does background postnatal methyl mercury exposure in toddlers affect cognition and behavior? Neurotoxicology 31(1): 1-9. - Cheuk DK, Wong V. 2006. Attention-deficit hyperactivity disorder and blood mercury level: a case-control study in Chinese children. Neuropediatrics 37(4): 234-240. - Daniels JL, Longnecker MP, Rowland AS, Golding J. 2004. Fish intake during pregnancy and early cognitive development of offspring. Epidemiology 15(4): 394-402. - Daniels JL, Rowland AS, Longnecker MP, Crawford P, Golding J. 2007. Maternal dental history, child's birth outcome and early cognitive development. Paediatr Perinat Epidemiol 21(5): 448-457. - Despres C, Beuter A, Richer F, Poitras K, Veilleux A, Ayotte P, et al. 2005. Neuromotor functions in Inuit preschool children exposed to Pb, PCBs, and Hg. Neurotoxicol Teratol 27(2): 245-257. - Drouillet-Pinard P, Huel G, Slama R, Forhan A, Sahuquillo J, Goua V, et al. 2010. Prenatal mercury contamination: relationship with maternal seafood consumption during pregnancy and fetal growth in the 'EDEN mother-child' cohort. Br J Nutr 104(8): 1096-1100. - Freire C, Ramos R, Lopez-Espinosa MJ, Diez S, Vioque J, Ballester F, et al. 2010. Hair mercury levels, fish consumption, and cognitive development in preschool children from Granada, Spain. Environ Res 110(1): 96-104. - Gao Y, Yan CH, Tian Y, Wang Y, Xie HF, Zhou X, et al. 2007. Prenatal exposure to mercury and neurobehavioral development of neonates in Zhoushan City, China. Environ Res 105(3): 390-399. - Guallar E, Sanz-Gallardo MI, van't Veer P, Bode P, Aro A, Gomez-Aracena J, et al. 2002. Mercury, fish oils, and the risk of myocardial infarction. N Engl J Med 347(22): 1747-1754. - Gundacker C, Frohlich S, Graf-Rohrmeister K, Eibenberger B, Jessenig V, Gicic D, et al. 2010. Perinatal lead and mercury exposure in Austria. Sci Total Environ 408(23): 5744-5749. - Ha M, Kwon HJ, Lim MH, Jee YK, Hong YC, Leem JH, et al. 2009. Low blood levels of lead and mercury and symptoms of attention deficit hyperactivity in children: a report of the children's health and environment research (CHEER). Neurotoxicology 30(1): 31-36. - Jedrychowski W, Jankowski J, Flak E, Skarupa A, Mroz E, Sochacka-Tatara E, et al. 2006. Effects of prenatal exposure to mercury on cognitive and psychomotor function in one-year-old infants: epidemiologic cohort study in Poland. Ann Epidemiol 16(6): 439-447. - Jedrychowski W, Perera F, Rauh V, Flak E, Mroz E, Pac A, et al. 2007. Fish intake during pregnancy and mercury level in cord and maternal blood at delivery: an environmental study in Poland. Int J Occup Med Environ Health 20(1): 31-37. - Johansson N, Basun H, Winblad B, Nordberg M. 2002. Relationship between mercury concentration in blood, cognitive performance, and blood pressure, in an elderly urban population. Biometals 15(2): 189-195. - Kim BM, Lee BE, Hong YC, Park H, Ha M, Kim YJ, Kim Y, Chang N, Kim BN, Oh SY, Yoo M, Ha EH. 2011. Mercury levels in maternal and cord blood and attained weight through the 24 months of life. Sci Total Environ 410: 26-33. - Lederman SA, Jones RL, Caldwell KL, Rauh V, Sheets SE, Tang D, et al. 2008. Relation between cord blood mercury levels and early child development in a World Trade Center cohort. Environ Health Perspect 116(8): 1085-1091. - Lee BE, Hong YC, Park H, Ha M, Koo BS, Chang N, et al. 2010. Interaction between GSTM1/GSTT1 polymorphism and blood mercury on birth weight. Environ Health Perspect 118(3): 437-443. - Lucas M, Dewailly E, Muckle G, Ayotte P, Bruneau S, Gingras S, et al. 2004. Gestational age and birth weight in relation to n-3 fatty acids among Inuit (Canada). Lipids 39(7): 617-626. - Miyake Y, Tanaka K, Yasutake A, Sasaki S, Hirota Y. 2011. Lack of association of mercury with risk of wheeze and eczema in Japanese children: The Osaka Maternal and Child Health Study. Environ Res 111(2011): 1180-1184. - Mozaffarian D, Shi P, Morris JS, Spiegelman D, Grandjean P, Siscovick DS, et al. 2011. Mercury exposure and risk of cardiovascular disease in two U.S. cohorts. N Engl J Med 364(12): 1116-1125. - Nyland JF, Wang SB, Shirley DL, Santos EO, Ventura AM, Souza JM, et al. 2011. Fetal and maternal immune responses to methylmercury exposure: a cross-sectional study. Environ Res. 111(2011): 584-589. - Oken E, Radesky JS, Wright RO, Bellinger DC, Amarasiriwardena CJ, Kleinman KP, et al. 2008. Maternal fish intake during pregnancy, blood mercury levels, and child cognition at age 3 years in a US cohort. Am J Epidemiol 167(10): 1171-1181. - Oken E, Wright RO, Kleinman KP, Bellinger D, Amarasiriwardena CJ, Hu H, et al. 2005. Maternal fish consumption, hair mercury, and infant cognition in a U.S. Cohort. Environ Health Perspect 113(10): 1376-1380. - Park H and Kim K. 2011. Association of blood mercury concentrations with atopic dermatitis in adults: a population-based study in Korea. Environ Res 111(2011): 573-578. - Philibert A, Bouchard M, Mergler D. 2008. Neuropsychiatric symptoms, omega-3, and mercury exposure in freshwater fish-eaters. Arch Environ Occup Health 63(3): 143-153. - Plusquellec P, Muckle G, Dewailly E, Ayotte P, Begin G, Desrosiers C, et al. 2010. The relation of environmental contaminants exposure to behavioral indicators in Inuit preschoolers in Arctic Quebec. Neurotoxicology 31(1): 17-25. - Ramon R, Ballester F, Aguinagalde X, Amurrio A, Vioque J, Lacasana M, et al. 2009. Fish consumption during pregnancy, prenatal mercury exposure, and anthropometric measures at birth in a prospective mother-infant cohort study in Spain. Am J Clin Nutr 90(4): 1047-1055. - Rissanen T, Voutilainen S, Nyyssonen K, Lakka TA, Salonen JT. 2000. Fish oil-derived fatty acids, docosahexaenoic acid and docosapentaenoic acid, and the risk of acute coronary events: the Kuopio ischaemic heart disease risk factor study. Circulation 102(22): 2677-2679. - Saint-Amour D, Roy MS, Bastien C, Ayotte P, Dewailly E, Despres C, et al. 2006. Alterations of visual evoked potentials in preschool Inuit children exposed to methylmercury and polychlorinated biphenyls from a marine diet. Neurotoxicology 27(4): 567-578. - Salonen JT, Seppanen K, Lakka TA, Salonen R, Kaplan GA. 2000. Mercury accumulation and accelerated progression of carotid atherosclerosis: a population-based prospective 4-year follow-up study in men in eastern Finland. Atherosclerosis 148(2): 265-273. - Salonen JT, Seppanen K, Nyyssonen K, Korpela H, Kauhanen J, Kantola M, et al. 1995. Intake of mercury from fish, lipid peroxidation, and the risk of myocardial infarction and coronary, cardiovascular, and any death in eastern Finnish men. Circulation 91(3): 645-655. - Sikorski R, Paszkowski T, Szprengier-Juszkiewicz T. 1986. Mercury in neonatal scalp hair. Sci Total Environ 57: 105-110. - Stewart PW, Reihman J, Lonky EI, Darvill TJ, Pagano J. 2003. Cognitive development in preschool children prenatally exposed to PCBs and MeHg. Neurotoxicol Teratol 25(1): 11-22. - Surkan PJ, Wypij D, Trachtenberg F, Daniel DB,
Barregard L, McKinlay S, et al. 2009. Neuropsychological function in school-age children with low mercury exposures. Environ Res 109(6): 728-733. - Suzuki K, Nakai K, Sugawara T, Nakamura T, Ohba T, Shimada M, et al. 2010. Neurobehavioral effects of prenatal exposure to methylmercury and PCBs, and seafood intake: neonatal behavioral assessment scale results of Tohoku study of child development. Environ Res 110(7): 699-704. - Torrente M, Colomina MT, Domingo JL. 2005. Metal concentrations in hair and cognitive assessment in an adolescent population. Biol Trace Elem Res 104(3): 215-221. - Valera B, Dewailly E, Poirier P. 2009. Environmental mercury exposure and blood pressure among Nunavik Inuit adults. Hypertension 54(5): 981-986. - Virtanen JK, Voutilainen S, Rissanen TH, Mursu J, Tuomainen TP, Korhonen MJ, et al. 2005. Mercury, fish oils, and risk of acute coronary events and cardiovascular disease, coronary heart disease, and all-cause mortality in men in eastern Finland. Arterioscler Thromb Vasc Biol 25(1): 228-233. - Vupputuri S, Longnecker MP, Daniels JL, Guo X, Sandler DP. 2005. Blood mercury level and blood pressure among US women: results from the National Health and Nutrition Examination Survey 1999-2000. Environ Res 97(2): 195-200. - Weil M, Bressler J, Parsons P, Bolla K, Glass T, Schwartz B. 2005. Blood mercury levels and neurobehavioral function. Jama 293(15): 1875-1882. - Wennberg M, Bergdahl IA, Hallmans G, Norberg M, Lundh T, Skerfving S, Strömberg U, Vessby B, Jansson JH. 2011. Fish consumption and myocardial infarction: a second prospective biomarker study from northern Sweden. Am J Clin Nutr. 93(1):27-36. - Xue F, Holzman C, Rahbar MH, Trosko K, Fischer L. 2007. Maternal fish consumption, mercury levels, and risk of preterm delivery. Environ Health Perspect 115(1): 42-47. - Yokoo EM, Valente JG, Grattan L, Schmidt SL, Platt I, Silbergeld EK. 2003. Low level methylmercury exposure affects neuropsychological function in adults. Environ Health 2(1): 8. - Yoshizawa K, Rimm EB, Morris JS, Spate VL, Hsieh CC, Spiegelman D, et al. 2002. Mercury and the risk of coronary heart disease in men. N Engl J Med 347(22): 1755-1760.